Прорыв в конструировании сверхпроводников: уникальный металл даёт новые возможности для создания материалов с заданными квантовыми эффектами

Теоретические работы ранее предсказывали существование в таких материалах компактных молекулярных орбиталей — стоячих волн электронов, которые способны влиять на сверхпроводимость и магнитный порядок через эффекты корреляции электронов. Однако в классических кагоме-металлах эти электронные зоны обычно находились слишком далеко от энергетических уровней, чтобы определять физические свойства вещества. В случае CsCr3Sb5 плоские зоны оказались активными и непосредственными участниками формирования сверхпроводимости и магнитного состояния, что делает этот материал уникальным.
В экспериментальной части работы учёные применили современные методы синхротронного анализа — спектроскопию фотоэлектронной эмиссии с угловым разрешением (ARPES) и резонансное неупругое рассеяние рентгеновских лучей (RIXS). ARPES позволяет с высокой точностью измерять распределение электронов по энергиям и импульсам, а RIXS фиксирует магнитные возбуждения. С помощью этих методов удалось получить прямые доказательства того, что компактные плоские электронные состояния играют ключевую роль в формировании исключительной сверхпроводимости и необычного магнитного порядка.
Для проведения исследований были выращены крупные и чистые кристаллы, превосходящие предыдущие образцы примерно в сто раз по размеру. Высокое качество позволило получить детальные спектры и выявить связь между структурой решётки и квантовыми состояниями.
Анализ экспериментальных данных был выполнен с помощью специально разработанной теоретической модели, отражающей структуру кагоме-решётки и взаимодействия между электронами в CsCr3Sb5. Результаты моделирования полностью согласуются с данными физических экспериментов и подтверждают, что плоские электронные зоны, ранее считавшиеся формальными, активно влияют на физику материала.
Важным результатом работы стал вывод о возможности управления электронными и магнитными свойствами с помощью химических и структурных изменений в кагоме-металлах. Это открывает новые перспективы для конструирования материалов с заданной сверхпроводимостью, магнитным порядком и другими квантовыми эффектами.
Открытие авторов закладывает основу для создания квантовых материалов нового поколения на базе активных кагоме-решёток. Такие материалы способны обеспечить прогресс в изучении экзотической сверхпроводимости, квантовых магнитных фаз и, потенциально, разработки сверхэффективных вычислительных устройств и сенсоров.
последние события
Стартап Extropic представил термодинамические чипы против энергетического кризиса ИИ
Новая архитектура снижает энергозатраты в тысячи раз
Запущенная учеными МГУ гидроракета установила рекорд РФ, взлетев на 309 м
Ракета была создана в рамках реализуемого вузом образовательного проекта "Ракета на километр".
читать далееКитай первым в мире освоит бездефектное производство чипов
Китайские исследователи провели уникальный анализ причин появления дефектов в производстве чипов на 300-мм кремниевых пластинах
читать далееВ 2026 году Роскосмос займется созданием совершенно новой полностью многоразовой российской ракеты «Корона», она во многом превзойдет Falcon 9
В Китае создали оптический чип, который «думает» на скорости света
Qualcomm представила новые ИИ-чипы AI200 и AI250 для дата-центров, конкурирующие с Nvidia и AMD
Компания выходит на рынок мощных ИИ-ускорителей с системами жидкостного охлаждения и большими объёмами памяти, планируя запуск в 2026–2027 годах
читать далееРазработка «Росэл» поможет проектировать сверхэффективные антенны
Холдинг «Росэл» Госкорпорации Ростех создал программный комплекс для проектирования сложных антенных систем.
читать далее
Помощник
Ваш запрос отправлен в проработку